Groups Not Acting on Manifolds
نویسنده
چکیده
In this article we collect a series of observations that constrain actions of many groups on compact manifolds. In particular, we show that “generic” finitely generated groups have no smooth volume preserving actions on compact manifolds.
منابع مشابه
On cohomogeneity one nonsimply connected 7-manifolds of constant positive curvature
In this paper, we give a classification of non simply connected seven dimensional Reimannian manifolds of constant positive curvature which admit irreducible cohomogeneity-one actions. We characterize the acting groups and describe the orbits. The first and second homo-topy groups of the orbits have been presented as well.
متن کاملFinite groups acting on 3–manifolds and cyclic branched coverings of knots
We are interested in finite groups acting orientation-preservingly on 3–manifolds (arbitrary actions, ie not necessarily free actions). In particular we consider finite groups which contain an involution with nonempty connected fixed point set. This condition is satisfied by the isometry group of any hyperbolic cyclic branched covering of a strongly invertible knot as well as by the isometry gr...
متن کاملar X iv : 0 80 1 . 08 75 v 2 [ m at h . D S ] 2 6 Ja n 20 08 GROUPS NOT ACTING ON MANIFOLDS
In this article we collect a series of observations that constrain actions of many groups on compact manifolds. In particular, we show that “generic” finitely generated groups have no smooth volume preserving actions on compact manifolds while also producing many finitely presented, torsion free groups with the same property.
متن کاملar X iv : 0 80 1 . 08 75 v 3 [ m at h . D S ] 1 5 M ay 2 00 8 GROUPS NOT ACTING ON MANIFOLDS
In this article we collect a series of observations that constrain actions of many groups on compact manifolds. In particular, we show that “generic” finitely generated groups have no smooth volume preserving actions on compact manifolds while also producing many finitely presented, torsion free groups with the same property.
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008